The bioavailability of coenzyme Q\textsubscript{10} supplements available in New Zealand differs markedly

In New Zealand, at least 10 brands of coenzyme Q\textsubscript{10} (CoQ\textsubscript{10}) supplement are available over the counter from health food shops, pharmacies, and the Internet. These products claim that supplementation with coenzyme Q\textsubscript{10} increases energy, wellbeing, stamina and muscle performance, strengthens the heart, and scavenges free radicals. The evidence for these effects is equivocal and well-controlled studies are needed. It is also necessary to confirm the bioavailability of the available CoQ\textsubscript{10} supplements.

Coenzyme Q\textsubscript{10} is an essential cofactor in the mitochondrial electron transport chain and also acts as an antioxidant, sparing, the \(\alpha\)-tocopheroxyl radical.1 In mammals, CoQ\textsubscript{10} is synthesised in all cells—and the diet is also a source, with meat being the biggest contributor.2

It is unlikely that many healthy New Zealand adults are frankly deficient in CoQ\textsubscript{10}, but CoQ\textsubscript{10} deficiency has been associated with various diseases including Alzheimer’s disease and Parkinson’s disease. It is also possible that diseases producing oxidative stress may result in CoQ\textsubscript{10} depletion. HMG-CoA reductase inhibitor (statin) therapy also decreases CoQ\textsubscript{10} synthesis3 and causes a potential CoQ\textsubscript{10} deficiency, due to inhibition of the common biosynthetic pathway for cholesterol and CoQ\textsubscript{10}. Thus, CoQ\textsubscript{10} is relevant to at least 100,000 New Zealand patients currently on statin therapy.

The available CoQ\textsubscript{10} supplements have different formulations, which may affect absorption.4–6 In particular, supplements in which CoQ\textsubscript{10} is dispersed in oil generally have higher bioavailability than those formulated as dry powder tablets.4,6

Therefore we have compared the bioavailability of seven different coenzyme Q\textsubscript{10} supplement brands, and provide a basis for selecting brand(s) for clinical use.

Ten healthy adult male volunteers were enrolled in a study approved by the Canterbury Ethics Committee. Participants were excluded if they had taken CoQ\textsubscript{10}, any vitamin supplements, or medications within the previous 4 weeks. The mean age was 24.2 years (range 21–28 years), the mean height was 179.8 cm (range 173–187 cm), and the mean weight was 71.8 kg (range 60–100 kg). The study was completed between November 2003 and January 2004.

Baseline blood samples were obtained after a 10-hour overnight fast, and CoQ\textsubscript{10} supplements were administered as a single nominal dose of 150 mg, with supplement brands given in a different randomised order for each participant and a 1-week washout period between trial days. After administration of the supplement, a standardised vegetarian breakfast and lunch were provided, containing approximately 3 \(\mu\)g of coenzyme Q\textsubscript{10}.2 Lunch was provided as a takeaway package, and participants were permitted to leave the study centre after breakfast. A second blood sample was collected after 6 hours.

The brands investigated were selected because they are ‘popular’ brands that contain differing excipients and are outlined in Table 1, which also shows the measured CoQ\textsubscript{10} content (n=6 capsules or tablets).
Table 1. The excipients, formulation, and actual CoQ\textsubscript{10} content of the seven CoQ\textsubscript{10} supplement brands investigated for bioavailability

<table>
<thead>
<tr>
<th>Brand</th>
<th>Excipients</th>
<th>Capsule/tablet type</th>
<th>% Yield CoQ\textsubscript{10} per capsule/tablet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-Gel</td>
<td>Vitamin E, Annato seed extract, Biosolv® base (lecithin, polysorbate, sorbitin monoleate, and medium chain triglycerides)</td>
<td>Softules containing liquid dispersion</td>
<td>137 ± 4</td>
</tr>
<tr>
<td>Radiance</td>
<td>Rice bran oil, lecithin, selenium, and vitamin E</td>
<td>Softgels containing liquid dispersion</td>
<td>125 ± 4</td>
</tr>
<tr>
<td>Blackmores</td>
<td>Soy lecithin</td>
<td>Capsules containing liquid dispersion</td>
<td>121 ± 8</td>
</tr>
<tr>
<td>Solgar</td>
<td>Vegetable cellulose, vegetable magnesium stearate, and silica</td>
<td>Vegetable capsules containing dry powder</td>
<td>130 ± 15</td>
</tr>
<tr>
<td>Kordel’s</td>
<td>Evening primrose oil and salmon oil</td>
<td>Capsules containing liquid dispersion</td>
<td>127 ± 7</td>
</tr>
<tr>
<td>Thompson’s</td>
<td>Vegetable oil</td>
<td>Vegetarian capsules containing liquid dispersion</td>
<td>121 ± 6</td>
</tr>
<tr>
<td>Good Health</td>
<td>Glucose, sucrose, magnesium stearate, calcium phosphate, and natural orange flavour</td>
<td>Chewable tablets</td>
<td>100 ± 7</td>
</tr>
</tbody>
</table>

Table 2. The median change in CoQ\textsubscript{10} after supplementation with the different brands

<table>
<thead>
<tr>
<th>Brand</th>
<th>Total CoQ\textsubscript{10} (µmol/L)</th>
<th>CoQ\textsubscript{10} to LDL cholesterol ratio (µmol/L)</th>
<th>CoQ\textsubscript{10} to total cholesterol ratio (µmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-Gel</td>
<td>0.586 (0.349–1.424)</td>
<td>0.275 (0.218–0.500)</td>
<td>0.125 (0.100–0.225)</td>
</tr>
<tr>
<td>Radiance</td>
<td>0.321 (0.218–1.118)</td>
<td>0.140 (0.120–0.373)</td>
<td>0.065 (0.048–0.210)</td>
</tr>
<tr>
<td>Blackmores</td>
<td>0.229 (0.109–0.531)</td>
<td>0.130 (0.072–0.253)</td>
<td>0.045 (0.028–0.090)</td>
</tr>
<tr>
<td>Solgar</td>
<td>0.203 (0.094–0.295)</td>
<td>0.075 (0.048–0.188)</td>
<td>0.045 (0.020–0.075)</td>
</tr>
<tr>
<td>Kordel’s</td>
<td>0.177 (0.102–0.274)</td>
<td>0.075 (0.050–0.173)</td>
<td>0.040 (0.018–0.078)</td>
</tr>
<tr>
<td>Thompson’s</td>
<td>0.173 (0.106–0.442)</td>
<td>0.080 (0.060–0.150)</td>
<td>0.028 (0.060–0.073)</td>
</tr>
<tr>
<td>Good Health</td>
<td>0.139 (0.105–0.297)</td>
<td>0.095 (0.040–0.165)</td>
<td>0.040 (0.018–0.053)</td>
</tr>
</tbody>
</table>

Values shown are median values, with brackets showing the inter-quartile range.
Blood specimens were collected and lithium heparin plasma was stored at -80°C until analysis. CoQ₁₀ was analysed using a method similar to that used by Tang et al. The within- and between-run coefficients of variation (CV) for the CoQ₁₀ assay are approximately 3.3%. Plasma lipids were determined by routine clinical methods. The differences between CoQ₁₀ supplements were tested using either the non-parametric Friedman test or Wilcoxon signed-rank test (as appropriate), with statistical significance inferred when p<0.05. All CoQ₁₀ supplement brands tested contained at least the claimed CoQ₁₀ (Table 2).

Mean baseline lipids (±SD) for all participants were 4.81±1.04, 2.78±0.75, 1.18±0.30, and 1.28±0.44 mmol/L for total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides respectively. Mean baseline CoQ₁₀ (±SD) was 0.85±0.25 µmol/L. During the trial there was no significant change in baseline levels of CoQ₁₀, direct LDL cholesterol, HDL cholesterol, triglycerides, or total cholesterol, thus confirming that the wash-out period was sufficient.

There was no significant effect of CoQ₁₀ supplementation on total cholesterol (p=0.539), triglycerides (p=0.128), or direct LDL and HDL cholesterol (p=0.910 and 0.587 respectively).

Figure 1: The change in coenzyme Q₁₀ concentration for individual participants and all supplement brands (n=7). Horizontal lines show median increase in CoQ₁₀ for each participant

There was a significant difference (p=0.003) in CoQ₁₀ absorption between the 10 participants (Figure 1). Some participants efficiently absorbed CoQ₁₀ from most
brands of the supplements, while others showed inefficient absorption. There was no correlation \((p=0.56) \) between baseline CoQ\(_{10}\) levels and absorption of CoQ\(_{10}\).

There was a significant difference in bioavailability between the seven CoQ\(_{10}\) brands \((p<0.001) \), with Q-Gel being significantly better than any other supplement \((p=0.013) \). This is summarised in Table 2.

There was a significant difference in the delta CoQ\(_{10}\) to direct LDL cholesterol and CoQ\(_{10}\) to total cholesterol ratios between the supplement brands \((p=0.001 \text{ for both}) \), thus mirroring the differences in total CoQ\(_{10}\) (Table 2).

There was a significant correlation between baseline LDL concentrations and change in CoQ\(_{10}\) \((p=0.004; R=+0.343) \), between total cholesterol levels and change in CoQ\(_{10}\) \((p=0.004; R=+0.338) \), and also between baseline triglycerides and change in CoQ\(_{10}\) \((p=0.035; R=+0.253) \). Therefore, higher LDL cholesterol or triglyceride concentrations may aid absorption of CoQ\(_{10}\). There was no correlation between HDL cholesterol, weight, or body mass index and mean CoQ\(_{10}\) absorption.

Although there are many different CoQ\(_{10}\) supplements available, there are little data on the prevalence and effect(s) of CoQ\(_{10}\) deficiency, or the benefits of CoQ\(_{10}\) supplementation. It is also necessary to confirm that the available CoQ\(_{10}\) supplements do in fact increase CoQ\(_{10}\) levels before advocating clinical use or attempting clinical trials.

There is also controversy about whether plasma (and hence dietary) CoQ\(_{10}\) is delivered to the mitochondria, but it is much easier to measure plasma levels than tissue level, and it is often assumed that tissue levels mirror those of plasma. However, Niklowitz et al\(^8\) found a positive correlation between CoQ\(_{10}\) in plasma and platelets, which contain mitochondria, implying that raising plasma levels of CoQ\(_{10}\) by diet and supplementation also raises tissue levels.

CoQ\(_{10}\) supplementation is well tolerated and dosages as high as 1200 mg/day have been administered with minimal side effects.\(^9\)

We found important differences in the bioavailability of these supplements. However, the mean increase in plasma total CoQ\(_{10}\) of 0.41 \(\mu \text{mol/L} \) equates to about 0.7 mg of CoQ\(_{10}\) being absorbed into the blood from the 150 mg supplied. This can be compared to the normal diet in which CoQ\(_{10}\) is limited to about 3 to 5 mg per day, mainly via the consumption of meats rather than fruits and vegetables.\(^2\)

Because CoQ\(_{10}\) is lipid soluble, it is likely that administration as a dispersion (or solubilised) in oil will aid absorption, as found in our study. The high bioavailability of Q-Gel compared to other coenzyme Q\(_{10}\) supplement brands supports the findings of Chopra et al\(^5\) who found the absorption of Q-Gel to be 319% better than that from a standard softgel capsule containing Q\(_{10}\) in oil, after 3 weeks of a daily 120 mg dose. Chopra et al\(^5\) also found the absorption from powder-filled hardshell capsules and powder-based tablets to be higher (125% and 128% respectively) than that from a standard softgel capsule.

Miles et al\(^4\) found the increase of plasma total CoQ\(_{10}\) by ‘solubilised’ supplemental CoQ\(_{10}\) to be 858%–1058% higher than that from a dry powder formulation. Furthermore, Wahlqvist et al\(^6\) found that the bioavailability of CoQ\(_{10}\) in a complex micelle emulsion (in a soft gelatine capsule) was 927% higher than a crystalline
CoQ\textsubscript{10} supplement with magnesium stearate (as an excipient and a hard gelatine capsule).

Thus it is clear that there are important differences. There is at least a four-fold variation in the increase in plasma CoQ\textsubscript{10} achieved by different supplements, and some people get no increase when they take the less effective supplements at typical doses.

The high bioavailability of Q-Gel may be due to the presence of both non-ionic surfactants and the natural surfactant lecithin. The Radiance and Blackmores brands showed the next highest bioavailability, and these brands also contain lecithin.

Significant between subject differences in absorption have been previously reported10–12 and highlight a need for monitoring of CoQ\textsubscript{10} levels during supplementation. There was no correlation between weight, body mass index or baseline CoQ\textsubscript{10} and CoQ\textsubscript{10} absorption—hence there are no simple clinical indicators that accurately predict response to different supplement formulations. Therefore, monitoring of plasma CoQ\textsubscript{10} concentration appears to be the only method to estimate CoQ\textsubscript{10} absorption.

There are important differences in bioavailability between the available CoQ\textsubscript{10} supplements and also significant inter-individual differences. We therefore recommend monitoring of plasma CoQ\textsubscript{10} levels during supplementation, and that differences in bioavailability are considered when selecting a supplement. In this study, the Q-gel brand showed significantly better bioavailability than the six other CoQ\textsubscript{10} supplements tested.

Sarah Molyneux
PhD Student
Biochemistry Unit
Canterbury Health Laboratories; and Department of Chemistry, University of Canterbury
Christchurch

Christopher Florkowski
Chemical Pathologist
Canterbury Health Laboratories
Christchurch

Michael Lever
Scientific Officer
Canterbury Health Laboratories
Christchurch

Peter George
Clinical Director
Canterbury Health Laboratories
Christchurch

Acknowledgments: We acknowledge the support from the Foundation for Research Science and Technology and the Health Research Council. We also thank Timothy Neve (for taking blood samples and help with organising the trial); staff in the Core Laboratory, Canterbury Health Laboratories (for running lipid assays); Associate Professor Chris Frampton (for statistical advice); and Professor Murray Munro (for technical advice).
References: